Dieses Bild zeigt Jürgen Pleiss

Jürgen Pleiss

Herr Prof. Dr.

Bioinformatics Group Leader
Institute of Biochemistry and Technical Biochemistry
Technical Biochemistry

Kontakt

Allmandring 31
70569 Stuttgart
Germany
Raum: 0.307

  1. 2024

    1. Pleiss J. FAIR Data and Software: Improving Efficiency and Quality of Biocatalytic Science. ACS Catal [Internet]. Februar 2024;14(4):2709--2718. Verfügbar unter: https://doi.org/10.1021/acscatal.3c06337
    2. Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Critical Reviews in Biochemistry and Molecular Biology [Internet]. 2024;0(0):1–49. Verfügbar unter: https://doi.org/10.1080/10409238.2024.2318547
    3. Behr AS, Surkamp J, Abbaspour E, Häußler M, Lütz S, Pleiss J, u. a. Fluent Integration of Laboratory Data into Biocatalytic Process Simulation Using EnzymeML, DWSIM, and Ontologies. Processes [Internet]. 2024;12(3). Verfügbar unter: https://www.mdpi.com/2227-9717/12/3/597
    4. Fademrecht S, Pleiss J. Enzyme Modeling: From the Sequence to the Substrate Complex. In: Introduction to Enzyme Technology [Internet]. Cham: Springer International Publishing; 2024. S. 39--59. (Introduction to Enzyme Technology). Verfügbar unter: https://doi.org/10.1007/978-3-031-42999-6_3
  2. 2023

    1. Giess T, Itzigehl S, Range J, Schömig R, Bruckner JR, Pleiss J. FAIR and scalable management of small-angle X-ray scattering data. Journal of Applied Crystallography [Internet]. April 2023;56(2):565–75. Verfügbar unter: https://doi.org/10.1107/S1600576723001577
    2. Höpfl S, Pleiss J, Radde NE. Bayesian estimation reveals that reproducible models in Systems Biology get more citations. Scientific Reports [Internet]. 2023;13(1):2695--. Verfügbar unter: https://doi.org/10.1038/s41598-023-29340-2
    3. Lauterbach S, Dienhart H, Range J, Malzacher S, Spöring JD, Rother D, u. a. EnzymeML: seamless data flow and modeling of enzymatic data. Nature Methods [Internet]. 2023;20(3):400--402. Verfügbar unter: https://doi.org/10.1038/s41592-022-01763-1
    4. Khella MS, Schnee P, Weirich S, Bui T, Bröhm A, Bashtrykov P, u. a. The T1150A cancer mutant of the protein lysine dimethyltransferase NSD2 can introduce H3K36 trimethylation. Journal of Biological Chemistry [Internet]. 2023;299(6):104796--. Verfügbar unter: https://www.sciencedirect.com/science/article/pii/S0021925823018240
  3. 2022

    1. Range J, Halupczok C, Lohmann J, Swainston N, Kettner C, Bergmann FT, u. a. EnzymeML—a data exchange format for biocatalysis and enzymology. The FEBS Journal [Internet]. Oktober 2022;289(19):5864--5874. Verfügbar unter: https://doi.org/10.1111/febs.16318
    2. Mack A, Emperle M, Schnee P, Pleiss J, Bashtrykov P, Jeltsch A. Preferential self-interaction of DNA methyltransferase DNMT3A subunits containing the R882H cancer mutation leads to dominant changes of flanking sequence preferences. J Mol Biol [Internet]. 2022;434:167482. Verfügbar unter: https://doi.org/10.1016/j.jmb.2022.167482
    3. Gültig M, Range JP, Schmitz B, Pleiss J. Integration of Simulated and Experimentally Determined Thermophysical Properties of Aqueous Mixtures by ThermoML. Journal of Chemical & Engineering Data [Internet]. 2022;67(11):3340–50. Verfügbar unter: https://doi.org/10.1021/acs.jced.2c00391
    4. Schnee P, Choudalakis M, Weirich S, Khella MS, Carvalho H, Pleiss J, u. a. Mechanistic basis of the increased methylation activity of the SETD2 protein lysine methyltransferase towards a designed super-substrate peptide. Communications Chemistry [Internet]. 2022;5(1):139--. Verfügbar unter: https://doi.org/10.1038/s42004-022-00753-w
    5. Royek S, Bayer M, Pfannstiel J, Pleiss J, Ingram G, Stintzi A, u. a. Processing of a plant peptide hormone precursor facilitated by post-translational tyrosine sulfation. Proc Natl Acad Sci USA. 2022;119:e2201195119.
    6. Buchholz PCF, Feuerriegel G, Zhang H, Perez-Garcia P, Nover LL, Chow J, u. a. Plastics degradation by hydrolytic enzymes: The plastics-active enzymes database—PAZy. Proteins: Structure, Function, and Bioinformatics [Internet]. 2022;90(7):1443–56. Verfügbar unter: https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.26325
    7. Chow J, Pleiss J, Streit WR. PAZy — mikrobielle Enzyme für den Abbau künstlicher Polymere. BIOspektrum [Internet]. 2022;28(4):451--452. Verfügbar unter: https://doi.org/10.1007/s12268-022-1752-3
    8. Zhang H, Pérez-García P, Dierkes R, Danso D, Pleiss J, Almeida A, u. a. The Bacteroidetes Aequorivita sp. and Kaistella jeonii produce promiscuous esterases with PET-hydrolyzing activity. Front Microbiol. 2022;12:803896.
  4. 2021

    1. Orlando M, Buchholz P, Lotti M, Pleiss J. The GH19 Engineering Database: sequence diversity, substrate scope, and evolution in glycoside hydrolase family 19. PLoS One. 2021;16:e0256817.
    2. Buchholz P, van LB, Eenink B, Bornberg-Bauer E, Pleiss J. Ancestral sequences of a large promiscuous enzyme family correspond to bridges in sequence space in a network representation. J R Soc Interface. 2021;18:20210389.
    3. Carvalho H, Ferrario V, Pleiss J. The molecular mechanism of methanol inhibition in CALB-catalyzed alcoholysis: analyzing molecular dynamics simulations by a Markov state model. J Chem Theory Comput. 2021;17:6570–82.
    4. Schatz K, Franco-Moreno J, Schäfer M, Rose A, Ferrario V, Pleiss J, u. a. Visual analysis of large-scale protein-ligand interaction data. Comput Graph Forum. 2021;40:394–408.
    5. Schatz K, Friess F, Schäfer M, Buchholz P, Pleiss J, Ertl T, u. a. Analyzing the similarity of protein domains by clustering molecular surface maps. Comput Graph. 2021;99:114–27.
    6. Stockinger P, Borlinghaus N, Sharma M, Aberle B, Grogan G, Pleiss J, u. a. Inverting the stereoselectivity of an NADH-dependent imine-reductase variant. ChemCatChem. 2021;13:5210–5.
    7. Faheem M, Zhang C, Morris M, Pleiss J, Oelschlaeger P. The role of synonymous mutations in the evolution of TEM β-lactamase genes. Antimicrob Agents Chemother. 2021;65:e00018-21.
    8. Lohoff C, Buchholz P, Le RHM, Pleiss J. The Expansin Engineering Database: a navigation and classification tool for expansins and homologues. Proteins. 2021;89:149–62.
    9. Pleiss J. Standardized data, scalable documentation, sustainable storage –  EnzymeML as a basis for FAIR data management in biocatalysis. ChemCatChem. 2021;13:3909–13.
  5. 2020

    1. Stockinger P, Schelle L, Schober B, Buchholz P, Pleiss J, Nestl B. Engineering of thermostable β-hydroxyacid dehydrogenase for asymmetric reduction of imines. ChemBioChem. 2020;21:3511–4.
    2. Mangiagalli M, Carvalho H, Natalello A, Ferrario V, Pennati M, Barbiroli A, u. a. Diverse effects of aqueous polar co-solvents on Candida antarctica lipase B. Int J Biol Macromol. 2020;150:930–40.
    3. Gygli G, Xu X, Pleiss J. Meta-analysis of viscosity of aqueous deep eutectic solvents and their components. Sci Rep. 2020;10:21395–21395.
    4. Rifai E, Ferrario V, Pleiss J, Geerke D. A combined linear interaction energy and alchemical solvation free energy approach for protein-binding anity computation. J Chem Theory Comput. 2020;16:1300–10.
    5. Bauer T, Buchholz P, Pleiss J. The modular structure of α/β-hydrolases. FEBS J. 2020;287:1035–53.
    6. Eisenkolb I, Jensch A, Eisenkolb K, Kramer A, Buchholz P, Pleiss J, u. a. Modeling of biocatalytic reactions: A workflow for model calibration, selection and validation using Bayesian statistics. AIChE J. 2020;66:e16866.
    7. Stockinger P, Roth S, Müller M, Pleiss J. Systematic evaluation of imine-reducing enzymes: Common principles in imine reductases, β-hydroxyacid dehydrogenases, and short-chain dehydrogenases/reductases. ChemBioChem. 2020;21:2689–95.
    8. Gräff M, Buchholz P, Le Roes-Hill M, Pleiss J. Multicopper oxidases: modular structure, sequence space and evolutionary relationships. Proteins. 2020;
    9. Malzacher S, Range J, Halupczok C, Pleiss J, Rother D. BioCatHub, a graphical user interface for standardized data acquisition in biocatalysis. Chem Ing Tech. 2020;92:1251–1251.
    10. Gygli G, Pleiss J. Simulation Foundry: automated and F.A.I.R. molecular modelling. J Chem Inf Model. 2020;60:1922–7.
    11. Xu X, Range J, Gygli G, Pleiss J. Analysis of thermophysical properties of deep eutectic solvents by data integration. J Chem Eng Data. 2020;65:1172–9.
    12. Roth S, Stockinger P, Steff J, Steimle S, Sautner V, Tittmann K, u. a. Crossing the border: From keto- to imine reduction in short-chain dehydrogenases/reductases. ChemBioChem. 2020;21:2615–9.
  6. 2019

    1. Buchholz P, Ohs R, Spieß A, Pleiss J. Progress curve analysis within BioCatNet: comparing kinetic models for enzyme-catalyzed self-ligation. Biotechnol J. 2019;14:e1800183.
    2. Gräff M, Buchholz P, Stockinger P, Bommarius B, Bommarius A, Pleiss J. The Short-chain Dehydrogenase/Reductase Engineering Database (SDRED):  A classification and analysis system for a highly diverse enzyme family. Proteins. 2019;87:443–51.
    3. Gobeil S, Ebert M, Park J, Gagné D, Doucet N, Berghuis A, u. a. The structural dynamics of engineered β-lactamases vary broadly on three timescales yet sustain native function. Sci Rep. 2019;9:6656–6656.
    4. Fries A, Mazzaferro L, Grüning B, Bisel P, Stibal K, Buchholz P, u. a. Alteration of the route to menaquinone towards isochorismate - derived metabolites. ChemBioChem. 2019;20:1672–7.
    5. Schatz K, Krone M, Pleiss J, Ertl T. Interactive visualization of biomolecules’ dynamic and complex properties. Eur Phys J Special Topics. 2019;227:1725–39.
    6. Baz J, Held C, Pleiss J, Hansen N. Thermophysical properties of glyceline-water mixtures investigated by molecular modelling. Phys Chem Chem Phys. 2019;21:6467–76.
    7. Ferrario V, Pleiss J. Molecular simulations of enzymes under non-natural conditions. Eur Phys J  Special Topics. 2019;227:1631–8.
    8. Ferrario V, Fischer M, Zhu Y, Pleiss J. Modelling of substrate access and substrate binding to cephalosporin acylases. Sci Rep. 2019;9:12402.
    9. Demming R, Hammer S, Nestl B, Gergel S, Fademrecht S, Pleiss J, u. a. Asymmetric Enzymatic Hydration of Unactivated, Aliphatic Alkenes. Angew Chem Int Ed Engl. 2019;58:173–7.
    10. Buchholz P, Ferrario V, Pohl M, Gardossi L, Pleiss J. Navigating within thiamine diphosphate-dependent decarboxylases: Sequences, structures, functional positions, and binding sites. Proteins. 2019;87:774–85.
    11. Grüninger M, Buchholz P, Mordhorst S, Strack P, Müller M, Hubrich F, u. a. Chorismatases – the family is growing. Org Biomol Chem. 2019;17:2092–8.
    12. Roddan R, Gygli G, Sula A, Mendez-Sanchez D, Pleiss J, Ward J, u. a. The acceptance and kinetic resolution of alpha-methyl substituted aldehydes by norcoclaurine synthases. ACS Catal. 2019;9:9640–9.
  7. 2018

    1. Ferrario V, Hansen N, Pleiss J. Interpretation of cytochrome P450 monooxygenase kinetics by modeling of thermodynamic activity. J Inorg Biochem. 2018;183:172–8.
    2. Lotti M, Pleiss J, Valero F, Ferrer P. Enzymatic production of biodiesel: strategies to overcome methanol inactivation. Biotechnol J. 2018;13:e1700155.
    3. Lenz M, Fademrecht S, Sharma M, Pleiss J, Grogan G, Nestl B. New imine-reducing enzymes from beta-hydroxyacid dehydrogenases by single amino acid substitutions. Protein Engineering, Design and Selection. 2018;31:109–20.
    4. Ferrario V, Pleiss J. Simulation of protein diffusion: a sensitive probe of protein-solvent interactions. J Biomol Struct Dyn. 2018;37:1534–44.
    5. Baierl A, Theorell A, Mackfeld U, Marquardt P, Hoffmann F, Moers S, u. a. Towards a mechanistic understanding of factors controlling the stereoselectivity of transketolase. ChemCatChem. 2018;10:2601–11.
    6. Pleiss J. Thermodynamic activity-based progress curve analysis in enzyme kinetics. Trends Biotechnol. 2018;36:234–8.
    7. Buß O, Buchholz P, Gräff M, Klausmann P, Rudat J, Pleiss J. The omega-Transaminase Engineering Database (oTAED): a navigation tool in protein sequence and structure space. Proteins. 2018;86:566–80.
    8. Martínez-Martínez M, Coscolín C, Santiago G, Chow J, Stogios P, ..., u. a. Determinants and prediction of esterase substrate promiscuity patterns. ACS Chem Biol. 2018;13:225–34.
    9. Buchholz P, Zeil C, Pleiss J. The scale-free nature of protein sequence space. PLoS One. 2018;13:e0200815.
  8. 2017

    1. Zhang Q, Catti L, Pleiss J, Tiefenbacher K. Terpene cyclizations inside a supramolecular catalyst: Leaving-group-controlled product selectivity and mechanistic studies. J Am Chem Soc. 2017;139:11482–92.
    2. Benson S, Pleiss J. Self-assembly nanostructures of triglyceride-water interfaces determine functional conformations of Candida antarctica lipase B. Langmuir. 2017;33:3151–9.
    3. Krone M, Friess F, Scharnowski K, Reina G, Fademrecht S, Kulschewski T, u. a. Molecular Surface Maps. IEEE Trans Vis Comput Graph. 2017;23:701–10.
    4. Buchholz P, Fademrecht S, Pleiss J. Percolation in protein sequence space. PLoS One. 2017;12:e0189646.
    5. Schmid J, Steiner L, Fademrecht S, Pleiss J, Otte K, Hauer B. Biocatalytic study of novel oleate hydratases. J Mol Catal B: Enzym. 2017;133:S243–9.
    6. Pleiss J. Thermodynamic activity–based interpretation of enzyme kinetics. Trends Biotechnol. 2017;35:379–82.
  9. 2016

    1. Kulschewski T, Pleiss J. Binding of solvent molecules to a protein surface in binary mixtures follows a competitive Langmuir model. Langmuir. 2016;32:8960–8.
    2. Zeil C, Widmann M, Fademrecht S, Vogel C, Pleiss J. Microdiversity of TEM β-lactamases: a network analysis of sequence-function relationships and exploration of sequence space. Antimicrob Agents Chemother. 2016;60:2709–17.
    3. Bock S, Buchholz P, Vogel C, Holzapfel A, Pleiss J, Wiechert W, u. a. Exploring the Sequence-Function Space of ThDP-Dependent Enzymes. Chemie Ingenieur Technik. 2016;88:1246.
    4. Benson S, Pleiss J. Computational modeling of a biocatalyst at a hydrophobic substrate interface. Nagel WE, Kröner DH RM, Herausgeber. High Performance Computing in Science and Engineering ´15. Springer International Publishing; 2016. (Nagel WE, Kröner DH RM, Reihenherausgeber. High Performance Computing in Science and Engineering ´15).
    5. Notonier S, Gricman L, Pleiss J, Hauer B. Semi-rational protein engineering of CYP153A M.aq.-CPR BM3 for efficient terminal hydroxylation of short to long chain fatty acids. ChemBioChem. 2016;17:1550–7.
    6. Jozwik I, Kiss F, Gricman L, Abdulmughni A, Brill E, Zapp J, u. a. Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. FEBS J. 2016;283:4128–48.
    7. Widmann M, Pleiss J. Sequence, structure, function: what we learn from analyzing protein families. A S, Herausgeber. Understanding enzymes. Singapore: pan Standord Publishing; 2016. (A S, Reihenherausgeber. Understanding enzymes).
    8. Eichler A, Gricman L, Herter S, Kelly P, Turner N, Pleiss J, u. a. Enantioselective benzylic hydroxylation catalysed by P450 monooxygenases: characterisation of a P450cam mutant library and molecular modelling. ChemBioChem. 2016;17:426–32.
    9. Pleiss J, Zeil C. Reply to The Curious Case of TEM-116. Antimicrob Agents Chemother. 2016;60:7001–7001.
    10. Schäfer I, Lasko G, Do T, Pleiss J, Weber U, Schmauder S. Peptide–zinc oxide interaction: Finite element simulation using cohesive zone models based on molecular dynamics simulation. Schmauder S SI, Herausgeber. Multiscale Materials Modeling. De Gruyter; 2016. (Schmauder S SI, Reihenherausgeber. Multiscale Materials Modeling).
    11. Gricman L, Weissenborn M, Hoffmann S, Borlinghaus N, Hauer B, Pleiss J. Redox Partner Interaction Sites in Cytochrome P450 Monooxygenases: In Silico Analysis and Experimental Validation. ChemistrySelect. 2016;6:1243–51.
    12. Buchholz P, Vogel C, Reusch W, Pohl M, Rother D, Spieß A, u. a. BioCatNet: a database system for the integration of enzyme sequences and biocatalytic experiments. ChemBioChem. 2016;17:2093–8.
    13. Hoffmann S, Weissenborn M, Gricman L, Notonier S, Pleiss J, Hauer B. The Impact of Linker Length on P450 Fusion Constructs: Activity, Stability and Coupling. ChemCatChem. 2016;8:1591–7.
    14. Fademrecht S, Scheller P, Nestl B, Hauer B, Pleiss J. Identification of imine reductase-specific sequence motifs. Proteins. 2016;84:600–10.
  10. 2015

    1. Gricman L, Vogel C, Pleiss J. Identification of universal selectivity-determining positions in cytochrome P450 monooxygenases by systematic sequence-based literature mining. Proteins. 2015;83:1593-1603.
    2. Prins A, Kleinsmidt L, Khan N, Kirby B, Kudanga T, Vollmer J, u. a. The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3(2). Enzyme Microb Technol. 2015;68:23–32.
    3. Taudt A, Arnold A, Pleiss J. Simulation of protein association - Kinetic pathways towards crystal contacts. Phys Rev E. 2015;91:033311.
    4. Lotti M, Pleiss J, Valero F, Ferrer P. Effects of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. Biotechnol J. 2015;10:22–30.
    5. Sasso F, Kulschewski T, Secundo F, Lotti M, Pleiss J. The effect of thermodynamic properties of solvent mixtures explains the difference between methanol and ethanol in C.antarctica lipase B catalyzed alcoholysis. J Biotechnol. 2015;214:1–8.
  11. 2014

    1. Westphal R, Vogel C, Schmitz C, Pleiss J, Müller M, Pohl M, u. a. A Tailor-Made Chimeric Thiamine Diphosphate Dependent Enzyme for the Direct Asymmetric Synthesis of (S)-Benzoins. Angew Chem Int Ed. 2014;53:9376–9.
    2. Widmann M, Pleiss J. Protein variants form a system of networks: microdiversity of IMP metallo-beta-lactamases. PLoS ONE. 2014;9:e101813.
    3. Scharnowski K, Krone M, Reina G, Kulschewski T, Pleiss J, Ertl T. Comparative Visualization of Molecular Surfaces Using Deformable Models. Comput Graph Forum. 2014;3:191–200.
    4. Benson S, Pleiss J. Molecular dynamics simulations of self-emulsifying drug delivery systems (SEDDS): influence of excipients on droplet nanostructure and drug localization. Langmuir. 2014;30:8471–80.
    5. Scheller P, Fademrecht S, Hofelzer S, Pleiss J, Leipold F, Turner N, u. a. Enzyme Toolbox: Novel Enantiocomplementary Imine Reductases. ChemBioChem. 2014;15:2201–4.
    6. Benson S, Pleiss J. Solvent Flux Method (SFM): A case study of water access to Candida antarctica lipase B. J Chem Theory Comput. 2014;10:5206–14.
    7. Pleiss J. Systematic analysis of large enzyme families: identification of specificity- and selectivity-determining hotspots. ChemCatChem. 2014;6:944–50.
    8. Gricman L, Vogel C, Pleiss J. Conservation analysis of class-specific positions in cytochrome P450 monooxygenases: functional and structural relevance. Proteins. 2014;82:491–504.
    9. Westphal R, Jansen S, Vogel C, Pleiss J, Müller M, Rother D, u. a. MenD from Bacillus subtilis: A Potent Catalyst for the Enantiocomplementary Asymmetric Synthesis of Functionalized α-Hydroxy Ketones. ChemCatChem. 2014;6:1082–8.
    10. Schäfer I, Lasko G, Do T, Pleiss J, Weber U, Schmauder S. Peptide - zinc oxide interaction: finite element simulation using cohesive zone models based on molecular dynamics simulation. Comp Mater Sci. 2014;95:320–7.
    11. Bogazkaya A, von BC, Kriening S, Busch A, Seifert A, Pleiss J, u. a. Selective allylic hydroxylation of acyclic terpenoids by CYP154E1 from Thermobifida fusca YX. Beilstein J Org Chem. 2014;10:1347–53.
    12. Baier J, Blumenstein N, Preusker J, Jeurgens L, Welzel U, Do T, u. a. The influence of ZnO-binding 12-mer peptides on bio-inspired ZnO formation. Cryst Eng Comm. 2014;16:5301–7.
    13. Vogel C, Pleiss J. The modular structure of ThDP-dependent enzymes. Proteins. 2014;82:2523–37.
  12. 2013

    1. Krone M, Reina G, Schulz C, Kulschewski T, Pleiss J, Ertl T. Interactive Extraction and Tracking of Biomolecular Surface Features. Comput Graph Forum. 2013;32:331–40.
    2. Benson S, Pleiss J. Incomplete mixing versus clathrate-like structures: a molecular view on hydrophobicity in methanol-water mixtures. J Mol Model. 2013;19:3427–36.
    3. Roduner E, Kaim W, Sarkar B, Urlacher V, Pleiss J, Gläser R, u. a. Selective catalytic oxidation of C–H bonds with molecular oxygen. ChemCatChem. 2013;5:82–112.
    4. Hailes H, Rother D, Müller M, Westphal R, Ward J, Pleiss J, u. a. Engineering stereoselectivity of ThDP-dependent enzymes. FEBS J. 2013;280:6374–94.
    5. Kulschewski T, Pleiss J. A molecular dynamics study of liquid aliphatic alcohols: simulation of density and self-diffusion coefficient using a modified OPLS force field. Mol Simulat. 2013;39:754–67.
    6. Westphal R, Waltzer S, Mackfeld U, Widmann M, Pleiss J, Beigi M, u. a. (S)-Selective MenD variants from Escherichia coli provide access to new functionalized chiral 2-hydroxy ketones. Chem Commun. 2013;49:2061–3.
    7. Kulschewski T, Sasso F, Secundo F, Lotti M, Pleiss J. Molecular mechanism of deactivation of C. antarctica lipase B by methanol. J Biotechnol. 2013;168:462–9.
    8. Westphal R, Hahn D, Mackfeld U, Waltzer S, Beigi M, Widmann M, u. a. Tailoring (S)-selectivity of MenD from Escherichia coli. ChemCatChem. 2013;13:3587–94.
  13. 2012

    1. Fademrecht S, Juhl P, Sirim D, Pleiss J. The triterpene cyclase protein family: a systematic analysis. Proteins. 2012;80:2009–19.
    2. Kulschewski T, Pleiss J. Simulation of enzymes in organic solvents. Lutz S, Bornscheuer U, Herausgeber. Protein engineering handbook, vol.3. Weinheim: Wiley-VCH; 2012. (Lutz S, Bornscheuer U, Reihenherausgeber. Protein engineering handbook, vol.3).
    3. Gruber C, Pleiss J. Lipase B from Candida antarctica binds to hydrophobic substrate-water interfaces via hydrophobic anchors surrounding the active site entrance. J Mol Catal B. 2012;84:48–54.
    4. Seifert A, Pleiss J. Identification of selectivity determinants in CYP monooxygenases by modelling and systematic analysis of sequence and structure. Curr Drug Metab. 2012;13:197–202.
    5. Siedenburg G, Jendrossek D, Breuer M, Juhl B, Pleiss J, Seitz M, u. a. Activation-independent cyclization of monoterpenoids. Appl Environ Microbiol. 2012;78:1055–62.
    6. Pickel B, Pfannstiel J, Steudle A, Lehmann A, Gerken U, Pleiss J, u. a. A model of dirigent proteins derived from structural and functional similarities with alleneoxide cyclase and lipocalins. FEBS J. 2012;279:1980–93.
    7. Baier J, Naumburg T, Blumenstein N, Jeurgens L, Welzel U, Do T, u. a. Bio-inspired mineralization of zinc oxide in presence of ZnO-binding peptides. Biointerface Res Appl Chem. 2012;2:380–91.
    8. Widmann M, Pleiss J, Oelschlaeger P. Systematic analysis of metallo-b-lactamases using an automated database. Antimicrob Agents Ch. 2012;56:3481–91.
    9. Pleiss J. Rational design of enzymes. Drauz K, Gröger H, May O, Herausgeber. Enzyme catalysis in organic synthesis. Weinheim: Wiley-VCH; 2012. (Drauz K, Gröger H, May O, Reihenherausgeber. Enzyme catalysis in organic synthesis).
    10. Widmann M, Pleiss J, Samland A. Computational tools for rational protein engineering of aldolases. Comput Struct Biotechnol J. 2012;2:e201209016–e201209016.
    11. Ferrario V, Braiuca P, Tessaro P, Knapic L, Gruber C, Pleiss J, u. a. Elucidating the structural and conformational factors responsible for the activity and substrate specificity of alkanesulfonate monooxygenase. J Biomol Struct Dyn. 2012;30:74–88.
    12. Vogel C, Widmann M, Pohl M, Pleiss J. A standard numbering scheme for thiamine diphosphate-dependent decarboxylases. BMC Biochemistry. 2012;13:24–24.
    13. Gruber C, Pleiss J. Molecular modeling of lipase binding to a substrate-water interface. Methods Mol Biol. 2012;861:313–27.
    14. Hutt M, Kulschewski T, Pleiss J. Molecular modelling of the mass density of single proteins. J Biomol Struct Dyn. 2012;30:318–27.
  14. 2011

    1. Rother D, Kolter G, Gerhards T, Berthold C, Gauchenova E, Knoll M, u. a. S-selective mixed carboligation by structure-based design of the pyruvate decarboxylase from Acetobacter pasteurianus. ChemCatChem. 2011;3:1587–96.
    2. Habeych D, Juhl P, Pleiss J, Vanegas D, Eggink G, Boeriu C. Biocatalytic synthesis of polyesters from sugar-based building blocks using immobilized Candida antarctica lipase B. J Mol Catal B - Enzym. 2011;71:1–9.
    3. Steudle A, Pleiss J. Modelling of lysozyme binding to a cation exchange surface at atomic detail: the role of flexibility. BiophysJ. 2011;100:3016–24.
    4. Pleiss J. Protein design in metabolic engineering and synthetic biology. CurrOpinBiotech. 2011;22:1–7.
    5. Krone M, Falk M, Rehm S, Pleiss J, Ertl T. Interactive exploration of protein cavities. Comput Graph Forum. 2011;30:673–82.
    6. Seifert A, Antonovici M, Hauer B, Pleiss J. An efficient route to selective bio-oxidation catalysts: an iterative approach comprising modeling, diversification, and screening, based on CYP102A1. ChemBioChem. 2011;12:1346–51.
    7. Weber E, Seifert A, Antonovici M, Geinitz C, Pleiss J, Urlacher V. Screening of a minimal enriched P450 BM3 mutant library for hydroxylation of cyclic and acyclic alkanes. ChemCommun. 2011;47:944–6.
    8. Sirim D, Wagner F, Wang L, Schmid R, Pleiss J. The Laccase  Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database. 2011;bar006.
    9. Gruber C, Pleiss J. Systematic benchmarking of large molecular dynamics simulations employing GROMACS on massive multiprocessing facilities. JComputChem. 2011;32:600–6.
  15. 2010

    1. Rehm S, Trodler P, Pleiss J. Solvent-induced lid opening in lipases: A molecular dynamics study. Protein Sci. 2010;19:2122–30.
    2. Widmann M, Juhl P, Pleiss J. Structural classification by the Lipase Engineering Database: a case study of Candida antarctica lipase A. BMC Genomics. 2010;11:123.
    3. Juhl P, Doderer K, Hollmann F, Thum O, Pleiss J. Engineering of Candida antarctica lipase B forhydrolysis of bulky carboxylic acid esters. J Biotechnol. 2010;150:474–80.
    4. Thai K, Pleiss J. SHV Lactamase Engineering Database: a reconciliation tool for SHV β-lactamases in public databases. BMC Genomics. 2010;11:563–563.
    5. Widmann M, Radloff R, Pleiss J. The Thiamine diphosphate dependent Enzyme Engineering Database: A tool for the systematic analysis of sequence and structure relations. BMC Biochemistry. 2010;11:9–9.
    6. Liu D, Trodler P, Eiben S, Koschorrek K, Mueller M, Pleiss J, u. a. Rational Design of Pseudozyma antarctica Lipase B Yielding a General Esterification Catalyst. Chem Bio Chem. 2010;11:789–95.
    7. Trodler P, Eiben S, Koschorreck K, Müller M, Pleiss J, Maurer S, u. a. Rational design of Pseudozyma antarctica lipase B yielding a general esterification catalyst. ChemBioChem. 2010;11:789–95.
    8. Widmann M, Trodler P, Pleiss J. The isoelectric region of proteins: a systematic analysis. PLoS One. 2010;5:e10546–e10546.
    9. Weber E, Sirim D, Schreiber T, Bejoy T, Pleiss J, Hunger M, u. a. Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with differentpore diameters. J Mol Catal B. 2010;64:29–37.
    10. Gatti-Lafranconi P, Natalello A, Rehm S, Doglia S, Pleiss J, Lotti M. Evolution of stability in a cold-active enzyme elicits specificity relaxation and highlights substrate-related effects on temperature adaptation. J Mol Biol. 2010;395:155–66.
    11. Sirim D, Widmann M, Wagner F, Pleiss J. Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. BMC Struct Biol. 2010;10:34–34.
  16. 2009

    1. Knoll M, Hamm T, Wagner F, Martinez V, Pleiss J. The PHA Depolymerase Engineering Database: A systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases. BMC Bioinformatics. 2009;10:89.
    2. Seifert A, Pleiss J. Identification of selectivity-determining residues in cytochrome P450 monooxygenases: a systematic analysis of the substrate recognition site 5. Proteins. 2009;74:1028–35.
    3. Seifert A, Vomund S, Grohmann K, Kriening S, Urlacher V, Laschat S, u. a. Rational design of a minimal and highly enrichedCYP102A1 mutant library with improved regio-, stereo- and chemoselectivity. ChemBioChem. 2009;10:853–61.
    4. Bös F, Pleiss J. Multiple molecular dynamics simulations of TEMbeta-lactamase: Dynamics and water binding of the Omega-loop. Biophys J. 2009;97:2550–8.
    5. Juhl P, Trodler P, Tyagi S, Pleiss J. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking. BMC Struct Biol. 2009;9:39.
    6. Thai Q, Bös F, Pleiss J. The Lactamase Engineering Database: a critical survey of TEM sequences in public databases. BMC Genomics. 2009;10:390.
    7. Branco R, Graber M, Denis V, Pleiss J. Molecular mechanism of the hydration of Candida antarctica lipase B in gas phase: water adsorption isotherms and molecular dynamics simulations. ChemBioChem. 2009;10:2913–9.
    8. Trodler P, Schmid R, Pleiss J. Modeling of solvent-dependent conformational transitions in Burkholderia cepacia lipase. BMC Struct Biol. 2009;9:38.
    9. Sirim D, Wagner F, Lisitsa A, Pleiss J. The Cytochrome P450 Engineering Database: integration of biochemical properties. BMC Biochemistry. 2009;10:27.
    10. Chen B, Huang Y, Pleiss J, Lin Z. Morphing activity between structurally similar enzymes: from heme-free bromoperoxidase to lipase. Biochemistry. 2009;48:11496–504.
    11. Dietrich M, Schmid R, Pleiss J, Urlacher V. Altering the regioselectivity of the subterminal fatty acid hydroxylase P450 BM-3 towards gamma- and delta-positions. J Biotechnol. 2009;139:115–7.
  17. 2008

    1. Widmann M, Clairo M, Dippon J, Pleiss J. Analysis of the distribution of functionally relevant rare codons. BMC Genomics. 2008;9:207.
    2. Trodler P, Pleiss J. Modeling structure and flexibility of Candida antarctica lipase B in organic solvents. BMC Struct Biol. 2008;8:9.
    3. Trodler P, Nieveler J, Rusnak M, Schmid R, Pleiss J. Rational design of a new one-step purification strategy for Candida antarctica lipase B by ion-exchange chromatography. J Chromatogr A. 2008;1179:161–7.
    4. Gocke D, Walter L, Gauchenova E, Kolter G, Knoll M, Berthold C, u. a. Rational protein design of ThDP-dependent enzymes: engineering stereoselectivity. ChemBioChem. 2008;9:406–12.
    5. Bös F, Pleiss J. Conserved water molecules stabilize the omega-loop in class A beta-lactamases. Antimicrob Agents Chemother. 2008;52:1072–9.
    6. Branco R, Seifert A, Budde M, Urlacher V, Ramos M, Pleiss J. Anchoring effects in a wide binding pocket: The molecular basis of regioselectivity in engineered cytochrome P450 monooxygenase from B. megaterium. Proteins. 2008;73:597–607.
    7. Messerschmidt S, Kolbe A, Müller D, Knoll M, Pleiss J, Kontermann R. Novel single-chain Fv′ formats for the generation of immunoliposomes by site-directed coupling. Bioconjugate Chem. 2008;19:362–9.
    8. Dietrich M, Eiben S, Asta C, Pleiss J, Urlacher V. Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 from Bacillus licheniformis. Appl Microbiol Biotechnol. 2008;79:931–40.
    9. Bidmon K, Grottel S, Bös F, Pleiss J, Ertl T. Visual abstractions of solvent pathlines near protein cavities. Comput Graph Forum. 2008;27:935–42.
    10. Knoll M, Pleiss J. The Medium-Chain Dehydrogenase/Reductase Engineering Database: A systematic analysis of a diverse protein family to understand sequence-structure-function relationship. Protein Sci. 2008;17:1689–97.
  18. 2007

    1. Pleiss J. Human Cytochrome P450 Monooxygenases – a General Model of Substrate Specificity and Regioselectivity. Rolf D. Schmid VBU, Herausgeber. Modern Biooxidation:Enzymes, Reactions and Applications. NULL: Wiley-VCH; 2007. (Rolf D. Schmid VBU, Reihenherausgeber. Modern Biooxidation:Enzymes, Reactions and Applications).
    2. Klein K, Tatzel S, Raimundo S, Saussele T, Hustert E, Pleiss J, u. a. A natural variant of the heme-bindingsignature (R441C) resulting in complete loss of the function of CYP2D6. Drug Metab Dispos. 2007;35:1247–50.
    3. Oelschlaeger P, Pleiss J. Hydroxyl groups in the betabeta sandwich of metallo-beta-lactamases favor enzyme activity: Tyr218 and Ser262 pull down the lid. J Mol Biol. 2007;366:316–29.
    4. Fischer M, Knoll M, Sirim D, Wagner F, Funke S, Pleiss J. The Cytochrome P450 Engineering Database: a navigation and prediction tool for the cytochrome P450 protein family. Bioinformatics. 2007;23:2015–7.
  19. 2006

    1. Knoll M, Müller M, Pleiss J, Pohl M. Factors mediating activity, selectivity, and substrate specificity for the thiamin diphosphate-dependent enzymes benzaldehyde lyase and benzoylformate decarboxylase. Chembiochem. 2006;7:1928–34.
    2. Fischer M, Thai Q, Grieb M, Pleiss J. DWARF - a data warehouse system for analyzing protein families. BMC Bioinformatics. 2006;7:495–495.
    3. Tyagi S, Pleiss J. Biochemical profiling in silico - Predicting substrate specificities of large enzyme families. J Biotechnol. 2006;124:108–16.
    4. Pleiss J. The promise of synthetic biology. Appl Microbiol Biotechnol. 2006;73:735–9.
    5. Seifert A, Tatzel S, Schmid R, Pleiss J. Multiple molecular dynamics simulations of human P450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin. Proteins. 2006;64:147–55.
  20. 2005

    1. Riepe F, Tatzel S, Sippell W, Pleiss J, Krone N. Congenital adrenal hyperplasia: the molecular basis of 21-hydroxylase deficiency in H-2(aw18) mice. Endocrinology. 2005;146:2563–74.
    2. Koschorreck M, Fischer M, Barth S, Pleiss J. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli. BMC Genomics. 2005;6:1–10.
    3. Oelschlaeger P, Mayo S, Pleiss J. Impact of remote mutations on metallo-beta-lactamase substrate specificity: implications for the evolution of antibiotic resistance. Protein Sci. 2005;14:765–74.
    4. Bornscheuer U, Henke E, Pleiss J. Enzymatic methods. Christoffers, J.; Baro A, Herausgeber. Quaternary Stereocenters. Weinheim: Wiley-VCH; 2005. 13 S. (Christoffers, J.; Baro A, Reihenherausgeber. Quaternary Stereocenters).
  21. 2004

    1. Tejo B, Salleh A, Pleiss J. Structure and dynamics of Candida rugosa lipase: the role of organic solvent. J Mol Model. 2004;10:358–66.
    2. Barth S, Fischer M, Schmid R, Pleiss J. The database of epoxide hydrolases andhaloalkane dehalogenases: one structure, manyfunctions. Bioinformatics. 2004;20:2845–7.
    3. Strohmeier M, Hrmova M, Fischer M, Harvey A, Fincher G, Pleiss J. Molecular modeling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the poaceae. Protein Sci. 2004;13:3200–13.
    4. Schmid R, Pleiss J, Urlacher V. Biokatalyse: Selektivoxidation von C-H-Bindungen mit O2. Nachr Chem. 2004;52:767–72.
    5. Currle-Linde N, Boes F, Lindner P, Pleiss J, Resch M. A Management System for Complex Parameter Studies and Experiments in Grid Computing. Gonzales T, Herausgeber. Proceedings of the 16th IASTED International Conference on PDCS - International Conference on Parallel and Distributed Computing and Systems. Cambridge: Acta press; 2004. 6 S. (Gonzales T, Reihenherausgeber. Proceedings of the 16th IASTED International Conference on PDCS - International Conference on Parallel and Distributed Computing and Systems).
    6. Richter T, Muerdter T, Heinkele G, Pleiss J, Tatzel S, Schwab M, u. a. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther. 2004;303:189–97.
    7. Barth S, Fischer M, Schmid R, Pleiss J. Sequence and structure of epoxide hydrolases: a systematic analysis. Proteins. 2004;55:846–55.
  22. 2003

    1. Oelschlaeger P, Schmid R, Pleiss J. Insight into the mechanism of the IMP-1 metallo-beta-lactamase by molecular dynamics simulations. Protein Eng. 2003;16:341–50.
    2. Henke E, Bornscheuer U, Schmid R, Pleiss J. A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. ChemBioChem. 2003;4:485–93.
    3. Oelschlaeger P, Schmid R, Pleiss J. Modeling domino effects in enzymes: molecular basis of the substrate specificity of the bacterial metallo-beta-lactamases IMP-1 and IMP-6. Biochemistry. 2003;42:8945–56.
    4. Fischer M, Pleiss J. The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Res. 2003;31:319–21.
    5. Lich N, Barth F, Pleiss J, Hai T. Homology modelling of alpha-amylase from Saccharomycopsis fibuligera with maltohexaose substrate. Vietnam Journal of Biotechnology. 2003;1:149–59.
  23. 2002

    1. Bathelt C, Schmid R, Pleiss J. Regioselectivity of CYP2B6: homology modeling, molecular dynamics simulation, docking. J Mol Model. 2002;8:327–35.
    2. Kusharyoto W, Pleiss J, Bachmann T, Schmid R. Mapping of a hapten-binding site: molecular modeling and site-directed mutagenesis study of an anti-atrazine antibody. Protein Eng. 2002;15:233–41.
    3. Schmitt J, Brocca S, Schmid R, Pleiss J. Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity. Protein Eng. 2002;15:595–601.
    4. Gentner C, Schmid R, Pleiss J. Primary alcohols in a ring structure: quantifying enantioselectivity of Pseudomonas cepacia lipase by an in silico assay. Colloids Surf B Biointerfaces. 2002;26:57–66.
    5. Henke E, Pleiss J, Bornscheuer U. Activity of lipases and esterases towards tertiary alcohols: insights into structure-function relationships. Angew Chem Int Ed. 2002;41:3211–3.
  24. 2001

    1. Kahlow U, Schmid R, Pleiss J. A model of the pressure dependence of the enantioselectivity of Candida rugosa lipase towards (±)-menthol. Protein Sci. 2001;10:1942–52.
    2. Schulz T, Schmid R, Pleiss J. Structural basis of stereoselectivity in Candida rugosa lipase-catalyzed hydrolysis of secondary alcohols. J Mol Model. 2001;7:265–70.
    3. Schwaneberg U, Fischer M, Schmitt J, Pleiss J, Lutz-Wahl S, Schmid R. Rational evolution of a medium chain-specific cytochrome P-450 BM-3 variant. Biochim Biophys Acta. 2001;1545:114–21.
    4. Bachmann T, Pleiss J, Villatte F, Schmid R. Bioresponse-Linked Analysis Based on Acetylcholinesterase Inhibition. B H, Herausgeber. Bioresponse-Linked Instrumental Analysis. Stuttgart: B.G. Teubner; 2001. (B H, Reihenherausgeber. Bioresponse-Linked Instrumental Analysis).
  25. 2000

    1. Bornscheuer U, Pleiss J, Schmidt-Dannert C, Schmid R. Lipases from Rhizopus species: genetics, structure and applications. Alberghina L, Herausgeber. Protein engineering in industrial biotechnology. CRC Press; 2000. 20 S. (Alberghina L, Reihenherausgeber. Protein engineering in industrial biotechnology).
    2. Otto R, Scheib H, Bornscheuer U, Pleiss J, Syldatk C, Schmid R. Substrate specificity of lipase B from Candida antarctica in the synthesis of arylaliphatic glycolipids. J Mol Catal B Enzym. 2000;8:201–11.
    3. Pleiss J, Fischer M, Peiker M, Thiele C, Schmid R. Lipase Engineering Database: understanding and exploiting sequence-structure-function relationships. J Mol Catal B: Enzym. 2000;10:491–508.
    4. Kovac A, Scheib H, Pleiss J, Schmid R, Paltauf F. Molecular basis of lipase stereoselectivity. Eur J Lipid Sci Tech. 2000;102:61–77.
    5. Pleiss J, Fischer M, Scheib H, Schulz T, Schmid R. Modelling structure-function relationship of lipase binding sites-a case study of specificity and selectivity. Kokotos G, Herausgeber. Lipases and LipidsStructure, function and biotechnological applications. Crete University Press; 2000. 19 S. (Kokotos G, Reihenherausgeber. Lipases and LipidsStructure, function and biotechnological applications).
    6. Pleiss J. In silico-Assays: Computergestuetzte Modellierung der Stereoselektivität von Lipasen. Transkript. 2000;9:38–40.
    7. Pleiss J, Scheib H, Schmid R. The his gap motif in microbial lipases: a determinant of stereoselectivity toward triacylglycerols and analogs. Biochimie. 2000;82:1043–52.
    8. Hwang B, Scheib H, Pleiss J, Kim B, Schmid R. Computer-aided molecular modeling of the enantioselectivity of Pseudomonas cepacia lipase toward g- and d-lactones. J Mol Catal B Enzym. 2000;10:223–31.
    9. Schulz T, Pleiss J, Schmid R. Stereoselectivity of Pseudomonas cepacia lipase towards secondary alcohols: a quantitative model. Protein Sci. 2000;9:1053–62.
  26. 1999

    1. Scheib H, Pleiss J, Kovac A, Paltauf F, Schmid R. Stereoselectivity of Mucorales lipases toward triradylglycerols--a simple solution to a complex problem. Protein Sci. 1999;8:215–21.
    2. Pleiss J, Schmid R. Bioinformatics and the internet. Chemistry International. 1999;21:33–6.
    3. Pleiss J, Mionetto N, Schmid R. Probing the acyl binding site of acetylcholinesterase by protein engineering. J Mol Catal B: Enzym. 1999;6:287–96.
  27. 1998

    1. Schmidt-Dannert C, Pleiss J, Schmid R. A toolbox of recombinant lipases for industrial applications. Ann N Y Acad Sci. 1998;864:14–22.
    2. Scheib H, Pleiss J, Stadler P, Kovac A, Potthoff A, Haalck L, u. a. Rational design of Rhizopus oryzae lipase with modified stereoselectivity toward triradylglycerols. Protein Eng. 1998;11:675–82.
    3. Hülser D, Eckert R, Irmer U, Krisciukaitis A, Mindermann A, Pleiss J, u. a. Intercellular communication via gap junction channels. Bioelectrochem Bioenerg. 1998;45:55–65.
    4. Pleiss J, Fischer M, Schmid R. Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids. 1998;93:67–80.
    5. Mindermann A, Pleiss J, Hülser D. Molecular Modeling of Gap Junction Pores. Werner R, Herausgeber. Gap Junctions. Proceedings of the 8th International Gap Junction Conference, Key Largo, Florida. Florida: IOS Press; 1998. 5 S. (Werner R, Reihenherausgeber. Gap Junctions. Proceedings of the 8th International Gap Junction Conference, Key Largo, Florida).
    6. Drees R, Pleiss J, Schmid R, Roller D. Integrating molecular modeling tools and virtual reality engines: an architecture for a highly immersive molecular modeling (HIMM) environment. Proceedings of CGI. 1998;391–2.
    7. Otto R, Bornscheuer U, Scheib H, Pleiss J, Syldatk C, Schmid R. Lipase-catalyzed esterification of unusual substrates: synthesis of glucuronic acid and ascorbic acid. Biotechnol Lett. 1998;20:1091–4.
  28. 1997

    1. Pleiss J, Mionetto N, Schmid R. Protein engineering of rat brain acetylcholinesterase: a point mutation enhances sensitivityto pesticides. Protein Eng. 1997;10:66–66.
    2. Holzwarth HC, Pleiss J, Schmid R. Computer-aided modelling of stereoselective triglyceride hydrolysis catalyzed by Rhizopus oryzae lipase. J Mol Catal B Enzym. 1997;3:73–82.
    3. Weber H, Zuegg J, Faber J, Pleiss J. Molecular reasons for lipase-sensitivity against acetaldehyde. J Mol Catal B: Enzym. 1997;3:131–8.
    4. Haalck L, Paltauf F, Pleiss J, Schmid R, Spener F, Stadler P. Stereoselectivity of lipase from Rhizopus oryzae toward triacylglycerols and anlogs: computer aided modelling and experimental validation. Methods Enzymol. 1997;284:353–76.
  29. 1996

    1. Drees R, Pleiss J, Schmid R. Highly immersive molecular modeling (HIMM): an architecture for the integration of molecular modelling and virtual reality. Hofestädt R, Löffler M, Schomburg D, Herausgeber. Computer science and biology : proceedings of the German Conference on Bioinformatics (GCB 96). Leipzig: Universität Leipzig; 1996. 3 S. (Hofestädt R, Löffler M, Schomburg D, Reihenherausgeber. Computer science and biology : proceedings of the German Conference on Bioinformatics (GCB 96)).
  30. 1994

    1. Pleiss J. Molecular basis of specificity and stereoselectivity of microbial lipases toward triacylglycerols. Bornscheuer UT, Herausgeber. Enzymes in Lipid Modification. Weinheim: Wiley-VCH; 1994. 15 S. (Bornscheuer UT, Reihenherausgeber. Enzymes in Lipid Modification).
    2. Pleiss J. Quantitative modelling of lipase enantioselectivity. Svendsen A, Herausgeber. Enzyme functionality: Design, engineering, and screening. Marcel Dekker; 1994. (Svendsen A, Reihenherausgeber. Enzyme functionality: Design, engineering, and screening).
  31. 1992

    1. Pleiss J, Jähnig F. Conformational transition of an alpha-helix studied by molecular dynamics. Eur Biophys J. 1992;21:63–70.
  32. 1991

    1. Pleiss J, Jähnig F. Collective vibrations of an alpha-helix. A molecular dynamics study. Biophys J. 1991;59:795–804.
  33. 1989

    1. Roditi I, Schwarz H, Pearson T, Beecroft R, Liu M, Richardson J, u. a. Procyclin gene expression and loss of the variant surface glycoprotein during differentiation of Trypanosoma brucei. J Cell Biol. 1989;108:737–46.
Forschungsgruppe
ORCID
Google Scholar
Zum Seitenanfang